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Abstract 

Accurately assessing the life and operating status of transformers has important guiding significance for the formulation of 

maintenance strategies for power grid companies, and at the same time plays a key role in the risk management of power grid 

companies. However, the traditional methods for predicting the remaining life of the equipment have the problems of insufficient 

accuracy or long data training time. In order to achieve a more accurate assessment of the life and status of the transformer, a 

random forest-based transformer life prediction method is constructed in this paper. Relying on the theory of big data analysis, by 

mining and analyzing the accumulated data of massive transformers, the life prediction model of the transformer is established and 

the characteristic parameters affecting the life of the transformer are extracted to predict the life of the transformer. The experimental 

data research demonstrates that the model can be accurate and effective Predicting the life of transformers has higher prediction 

accuracy than traditional methods, providing method references for asset management and risk management of power grid 

companies.   
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1. Introduction 

Power transformer is a key asset in power grid equipment and plays a vital role in the reliability of power system 

operation. During the operation and maintenance period, the investment of overhauls technical innovation project would 

not only affect the safe and stable operation of the power grid, but also affect the profitability output of the company. 

Based on the goal of technical feasibility and the best economic benefits, realizing the precise decision of capital 

investment in equipment overhauls technical innovation project was an important research direction at the moment [1]. 

At the same time, the continuous increase in energy demand and the increase in the number of operating transformers 

have made the operating transformers close to or have exceeded their expected technical life, leading to the problem of 

high failure rates of operating transformers [2]. The failure of an in-service transformer will have catastrophic 

consequences for the economy and operation of the power grid. Therefore, it is necessary to conduct regular condition 

monitoring of the transformer to predict the life of the transformer to plan equipment maintenance and replacement and 

reduce the risk of equipment failure. How to use the advantages of big data to find a data-supported analysis method for 

the life management of transformers is a hot research issue for smart grids [3][4]. 

The main purpose of data mining technology is to explore the relationship between hidden variables from big data sets. 

Data mining technology involves three aspects: statistical learning, artificial intelligence and machine learning. In 

addition, data mining techniques are also used to analyze and predict research objects. Most of the data mining 
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techniques used for analysis use clustering algorithms and association rules, while the data mining techniques used for 

prediction mainly use classification and regression algorithms. These include decision trees, artificial neural networks, 

genetic algorithms, K nearest neighbors, and naive Bayes. Generally speaking, the process of data mining on large data 

sets includes 7 steps. These steps can be defined as "data cleansing", "data integration", "data selection", "data 

conversion", "data mining", "model evaluation" and "analysis report". 

So far, most of the research work in this field has focused on the discussion of the first two procurement strategies, 

operation and maintenance strategies, and LCC cost calculation methods, while the research on how to formulate 

decommissioning strategies, especially determining the economic decommissioning point of equipment, is very limited. 

Literature 5 proposes a method to determine the economic retirement point of the main equipment of the power grid by 

constructing an equipment failure model [5]. A large number of researchers have used data mining technology in power-

related fields [6], For example, in document 6 and 7 [7].Applying the random forest algorithm to the field of power load 

has ideal results. Use big data processing to mine the relevant variables of each transformer, find out how it affects the 

life of the transformer, and predict the life of the transformer. 

Some scholars have proposed to use the massive data of electricity meters for correlation analysis, and use data mining 

techniques to find out the hidden relationship between big data and performance status of electricity meters that are 

difficult to explore with traditional statistical methods. In literature 8, the characteristic parameters that affect the life of 

the transformer are extracted, and these characteristic parameters are learned through an adaptive fuzzy neural network, 

and the back propagation algorithm is used to solve the adaptive dynamic adjustment of the weights, and the life 

prediction model of the transformer is constructed [8]. In Literature 9, a dynamic failure rate model of a transformer 

suitable for short-term and medium- and long-term prediction is established based on the Markov model, and the 

remaining life of the transformer is modeled according to the calculated failure rate [9]. In Literature 10, a deep belief 

network is used to extract and classify the multi-dimensional data of power transformer faults, and combined with D-S 

evidence theory to solve the uncertainty problem in fault diagnosis, a multi-level decision fusion model for power 

transformer fault diagnosis is constructed [10]. However, the above methods have problems such as insufficient 

prediction accuracy and long data training time. 

This paper proposes a transformer model based on random forest (RF). By mining and analyzing the basic attribute 

information of the transformer, the service life of the transformer is used as the output label of the model to predict [11]. 

Each meter can be obtained before the transformer is put into use. The estimated life of the transformer provides an 

analysis basis for the monitoring and rotation cycle of the transformer, and verifies the accuracy of the model proposed 

in this article. The transformer life prediction based on the random forest algorithm has extremely high accuracy and is 

currently a new prediction method in terms of transformer life prediction. It has great advantages over the previous 

prediction methods and has improved prediction accuracy and training duration.  

2. Literature Review 

Random forest is one of the extension methods of decision trees. It is an integrated learning algorithm composed of 

multiple decision trees [12][13]. Because decision trees are prone to overfitting, in order to improve this shortcoming, 

the prediction result of random forest is composed of multiple decision trees. The trees are independently voted on, and 

the combination of decision trees makes parallel training of data sets possible. When the data set is large in scale and 

complex in nature, a single decision tree is not enough to obtain the data information in the synchronized phasor data, 

and a single tree requires more time to classify the entire data set, and multiple decision trees are used to work in parallel. 

The speed and accuracy of classifying data sets are very efficient. The classification principle of random forest is shown 

in Figure 1. 

Random forest is a powerful machine learning algorithm that deviates from conventional decision tree construction. 

Instead of employing all variables to split tree nodes, it adopts a distinctive approach by selecting a random subset of 

variables at each node for determining the optimal split. This deliberate randomization serves a crucial purpose: to 

mitigate the correlation between decision trees within the forest, thereby reducing the overall variance of the ensemble. 

The construction process of a random forest typically involves several key steps, designed to harness the benefits of this 

randomness. These steps encompass the careful selection of variable subsets, the creation of individual decision trees 
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through iterative node splitting, and the amalgamation of these diverse trees into a robust and resilient forest. By 

introducing controlled randomness into the decision-making process, random forest emerges as a robust ensemble 

learning technique, capable of enhancing predictive accuracy and generalizability across various applications. 

1) Extract n-tree sample subsets from the original data. To enhance the clarity and depth of the research, the initial step 

involves extracting n-tree sample subsets from the original dataset. This crucial phase is undertaken to obtain 

representative and diverse samples that encapsulate the inherent complexity and variability present in the entire 

dataset. By breaking down the data into subsets, we aim to create a more manageable and focused set of observations 

for analysis. This process not only facilitates a more nuanced understanding of the dataset but also serves as a 

foundation for subsequent analytical procedures. The careful extraction of these subsets lays the groundwork for a 

comprehensive exploration of patterns, trends, and relationships within the data, ultimately contributing to the 

robustness and reliability of the research outcomes.  

2) The research approach involves the utilization of sample subsets to construct decision trees. In this process, each 

subset is systematically employed to generate a decision tree, wherein at each node of the tree, a variable denoted 

as M is randomly chosen to facilitate the splitting of the data. The objective is to expand the tree iteratively, ensuring 

that the terminal nodes attain a minimum size threshold, thereby avoiding the creation of terminal nodes with a 

number of instances falling below a specified threshold. This strategy aims to enhance the robustness and 

generalizability of the decision trees by promoting a sufficient level of granularity in the final nodes. The 

randomness in variable selection adds an element of diversity to the decision tree construction, contributing to the 

overall stability and reliability of the generated models. The approach emphasizes the importance of balancing tree 

growth with node size, aligning with the objective of producing decision trees that effectively capture the underlying 

patterns and relationships within the data. 

3) Use voting mechanism to count the results of n-tree decision trees for classification. Random forest adopts the mode 

of multiple decision trees working in parallel, sampling the data randomly with replacement, and its predictive 

ability is relatively better than the single classification model. It is suitable for large data sets. Its classification model 

is generally considered to have high precision. 

 

Figure 1. Random forest classification principle 

3. Research Methodology 

This paper preprocesses the collected transformer data and divides it into a training set and a test set, and then filters out 

multiple variables that may be associated with the life of the transformer, establishes a random forest model through 

computer programming and training set data, and substitutes it into the test set Data and adjust parameters to obtain 

different prediction results, and compare with the prediction results of the SVM method [14][15]. 

3.1. Data Preprocessing 

The transformer data used in this article is provided by Anhui Power Grid. The transformer data in the data includes 14 

basic information for analysis, including: "equipment classification", "start date", "asset manufacturer", "model", " Asset 

manufacturing country", "maintenance factory", "maintenance factory", "factory area", "cost center", "physical 

management department", "use storage department", "use custodian", "voltage level", "equipment Attribute data of 
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various types of transformers: increase method" and "transformation capacity". These data are converted into 

corresponding digital labels, which are respectively used as the input feature quantities of the prediction model, and the 

life expectancy can be predicted by establishing the model. 

When constructing the equipment life prediction model, the service life of 2000 transformers is counted and classified 

according to the service life, which is divided into "A", "B", "C", "D", "E" There are 7 levels of "F" and "G", where A 

level represents the equipment service life of 0-5 years, the B level represents the equipment service life of 5-10 years, 

and the C level represents the equipment service life of 10-15 years. D Class E means the service life of the equipment 

is 15-20 years, Class E means the service life of the equipment is 20-30 years, Class F means the service life of the 

equipment is 30-40 years, and Class G means the service life of the equipment is more than 40 years. The remaining 14 

items of basic attribute information are combined and converted into input feature quantities composed of 15 numbers. 

3.2. Establishment of the Life Prediction Model of Transformer Equipment 

This research involves an extensive dataset comprising over 2,065 electricity meters, serving as a fundamental aspect 

of the investigation. Notably, the dataset is divided into two subsets for distinct purposes. A substantial portion, precisely 

2000 data points, is allocated for training the model. This training dataset plays a crucial role in facilitating the learning 

process and enhancing the model's predictive capabilities. Additionally, to assess the model's efficacy and 

generalization, 65 pieces of data are reserved for testing purposes. These data points serve as a predictive benchmark, 

allowing for the evaluation of the model's performance in real-world scenarios [16][17]. The specifics of the prediction 

process are visually represented in Figure 2, providing a comprehensive overview of the conceptual framework guiding 

the study. This structured approach to data utilization ensures a rigorous evaluation of the model's predictive accuracy 

and its potential applicability in practical electricity metering scenarios. 

 
Figure 2. Flow chart of transformer life prediction 

In the course of this research, the gathered equipment data undergoes a meticulous preprocessing stage aimed at 

extracting essential features, ultimately resulting in the creation of a comprehensive transformer dataset encompassing 

various influential factors [17][18]. This dataset is subsequently partitioned into two distinct segments for the purpose 

of model development and evaluation. The first segment, comprising 2000 sets of data, serves as the training dataset, 

facilitating the refinement and optimization of the models. Concurrently, the second segment, consisting of 65 sets of 

data, is earmarked for testing the models, thereby assessing their predictive capabilities. 

Subsequently, a rigorous analysis is conducted on the predictions generated by the two distinct models developed during 

the study. This analytical process entails a thorough examination of the models' performance across the testing dataset. 

By comparing and contrasting the outcomes produced by each model, the research aims to derive insightful conclusions 

regarding their respective efficacy and accuracy in predicting outcomes based on the equipment data. The final stage of 

the investigation involves synthesizing these comparative analyses to draw overarching conclusions that contribute to a 

deeper understanding of the models' performance and their applicability in the context of the equipment dataset under 

consideration [19][20].  
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4. Result and Discussion 

To assess the robustness and reliability of the prediction model proposed in this article, a comprehensive experimental 

validation is conducted on the transformer data. This validation process involves meticulous comparisons with 

previously retained data, enabling a thorough examination of the model's predictive accuracy and performance 

consistency. The verification method employed is designed to scrutinize the reliability of the model, ensuring that it can 

effectively generalize to new data and maintain its predictive efficacy across different scenarios. By subjecting the 

proposed prediction model to rigorous experimental verification, this study aims to contribute valuable insights into its 

practical applicability and establish a foundation for its confident adoption in real-world scenarios. The integration of 

empirical evidence and systematic validation procedures enhances the credibility of the proposed model, reinforcing its 

potential as a reliable tool for making accurate predictions in diverse contexts. 

4.1. Transformer Life Prediction Results 

In the life prediction model of the electric meter, the study employs a comprehensive approach by incorporating 14 

distinct feature vectors as input parameters. The evaluation of prediction accuracy is visualized through Figure 3, which 

illustrates the error associated with the prediction outcomes. To establish the robustness and reliability of the model, a 

dataset comprising 2000 transformer equipment records is utilized for the training phase, while an additional set of 65 

equipment records is reserved for testing purposes. 

The experimentation process involves varying the number of decision trees, denoted as n-tree values, during the model 

training. This exploration allows for a nuanced analysis of the model's performance under different conditions. The 

ensuing results, meticulously presented in the accompanying figure, shed light on the impact of varying n-tree values 

on the predictive capabilities of the electric meter's life prediction model. This systematic investigation aims to uncover 

optimal configurations and parameters that enhance the overall accuracy and reliability of the prediction model, 

contributing valuable insights to the field of electric meter life prediction. 

 
Figure 3. RF prediction error map of different transformer life classes 

The provided information outlines the number of trees (n-tree values) associated with different random forests (RF1, 

RF2, RF3, RF4, and RF5). These values, namely 25, 20, 15, 10, and 5, respectively, signify the quantity of decision 

trees within each random forest. This configuration is crucial in understanding the structure and complexity of the 

random forests under consideration. 

The variation in the number of trees among the random forests suggests potential differences in their predictive power 

and generalization capabilities. Typically, a higher number of trees can enhance the robustness and accuracy of a random 

forest model, as it combines predictions from multiple trees to mitigate overfitting and improve overall performance. 

Conversely, a lower number of trees may result in a simpler model that is computationally more efficient but may 

sacrifice some predictive accuracy. 

The observed gradient in the n-tree values across the random forests prompts further investigation into the rationale 

behind this selection. Researchers may explore whether these specific quantities were chosen based on optimization 

processes, computational constraints, or if there is a deliberate design strategy underlying the varying tree numbers. 

Additionally, understanding the impact of these n-tree values on the model's performance could be a key focus, shedding 
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light on the trade-offs between model complexity and predictive accuracy within the context of the specific problem 

being addressed.  

It can be seen from the table that using the random forest prediction model constructed in this article, the accuracy of 

the equipment lifetime predicted by the basic information of 15 transformer equipment is above 95% except for the 

experimental result with an n-tree value of 5. And the larger the n-tree value, the lower the prediction error, and the 

better the prediction effect, and there are a small amount of prediction error for transformers with a service life of 15-

20 years. However, the training time required for prediction will continue to increase with the increase of the n-tree 

value. If the amount of data is large, a lower n-tree value can be used for life prediction to balance the prediction time 

and the prediction effect. According to different needs make changes. 

4.2. Random Forest Prediction Vs. SVM Prediction 

Similarly, use the SVM algorithm to predict the life of the equipment using the data of 2000 transformer equipment and 

65 equipment data. The results are shown in Figure 4 below. In most life classes, the number of scrapped equipment 

predicted by the SVM algorithm is greater than the number of true scraps, and the predicted number of scrapped 

equipment for the transformer life class of some equipment is less than 50% of the real data. 

 
Figure 4. The result of life prediction of transformer equipment based on SVM algorithm 

 
Figure 5. The life prediction results of transformer equipment under the random forest model 

In Figure 5, the prediction result of the random forest prediction model with an n-tree value of 25, except that there are 

a small amount of error in the prediction of the life level of 15-20 years, the prediction accuracy of the rest of the life 

level is 100%, and the overall prediction is accurate The rate is 98.45%, indicating that random forest can predict the 

life of equipment well based on the given data. The comparison between the prediction results of the random forest 

prediction model with an n-tree value of 25 and the life prediction results of transformer equipment based on the SVM 

algorithm is shown in Figure 6 below. 

It can be seen from the figure that the prediction accuracy of the random forest model under the transformer life level is 

higher than that of the SVM model, except that the sample number of the equipment life level of 30-40 years is 0. It 

shows that the prediction accuracy of the random forest model is higher than that of the SVM model. Under the condition 

of 15 items of data, the prediction effect of the random forest model in the prediction of transformer life is much higher 

than that of the SVM model. Moreover, the data training time of the SVM model is much longer than that of the random 

forest model. From the overall accuracy analysis, the accuracy of the SVM model is 63.08%, which is much lower than 

the 98.45% of the random forest model. 



International Journal of Informatics and Information Systems  

Vol. 7, No. 1, January 2024, pp. 08-15 

ISSN 2579-7069 

14 

 

 
Figure 6. Comparison of prediction results between RF model and SVM model   

5. Conclusion 

This research leverages the capabilities of the random forest algorithm to develop a transformative life prediction model 

for transformers. The study involved an extensive experimental test using a dataset comprising 2065 transformer 

records. The outcomes of the experiment yield significant insights into the effectiveness of the proposed model: 

1) The random forest model, as constructed in this paper, demonstrates a remarkable ability to predict transformer life 

accurately. Comparative analysis against alternative algorithms substantiates the model's superior prediction accuracy, 

highlighting its robust performance. 

2) Investigation into the model's parameter, n-tree, reveals a noteworthy trend. As the value of n-tree increases, so does 

prediction accuracy; however, this comes at the expense of increased prediction time. To strike a balance between 

accuracy and efficiency, it is recommended to adjust the value of n-tree based on specific needs and considerations. 

3) The methodology adopted in this research aligns with big data principles, emphasizing simplicity and practicality in 

its implementation. This approach holds promise for streamlining asset management and enhancing risk management 

practices within power grid enterprises. Its compatibility with the overarching concept of big data ensures a user-friendly 

and effective solution for industry professionals. Overall, this research contributes valuable insights and a practical tool 

for optimizing transformer life predictions in the context of power grid operations.  
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